Why Python:
Simple(Syntax as Simple English), Open Source , Libraries supported by large and Active Community ,
Table of Contents
1. Operators
2. Variables and Variable Naming Conventions
3. Data Types in Python
4. Conditional Statements
5. Looping Statements
6. Functions
7. Packages in Python
8. Hands-on with Pandas Library
1. Operators: Symbolic Representations of Mathematical Tasks
- Arithmetic Operator : +,-,*,-,% ,//, **
- Conditional Operator : Returns True/ False with : <, <=, ==, >=, >, !=
- Logical Operator : and, or, not
| Python Commands | Output |
| 3 + 5 / 45-54 * 4 | – 212.88888888888889 |
| # "DataScientist"+3 Gives Error
"DataScientist "*3 |
‘DataScientist DataScientist DataScientist ‘ |
| "DataScientist "+ "3 " | ‘DataScientist 3 ‘ |
| 45>43 | True |
| 56<34 | False |
| 34*34 > 34*34 | False |
| 34*34 == 34**34 | False |
| 0 and 3 | 0 |
| 3 and 0 | 0 |
| 3 and 5 # Gives 2nd value (in Python) | 5 |
| 0 or 3 | 3 |
| 3 or 5 # Returns 5 | 3 |
| True and False | False |
| True or False | True |
2. Variables and Data Types
- Variables are names bounded to objects
- Case Sensitive, start with character or _underscore (not Number)
- Data Int, Float, Bool, String, (IFBS)
| a = 5
a |
5 |
| print(a) | 5 |
| A=4 # Case Insensitive
print(A,a) |
4 5 |
| a = 5
b = 7 a = b print(a,b) |
7 7 |
| _a5 = 5
type(_a5) |
int |
| b = "Data Scientist"
type(b) |
str |
3. Conditional Statements
- If arrived home early: then cook, else order on swiggy!
- If-else statements: Single Condition
| if(condition):
statement1 else: statement2 —- |
if(time == late):
food = swiggy else: food = cook |
| if(condition1):
statement1 elif(condition2): statement2 else: statement3 |
Assume a variable x, print “positive” if x is greater than 0, ‘Zero’ if x is equal to 0 or “negative” if x is less than 0
x = -23432*-323 if(x == 0): print("X is Zero") elif(x > 0): print("X is Positive") else: print("X is Negative") |
| # Take a variable X and print "Even" if the number is divisible by 2, otherwise print "Odd"
x = 9.3 if(x%2 == 0): print("Given Number x: ", x, "is EVEN ") else: print("Given Number x: ", x, "is Odd ") |
| # Take a variable y and print "Grade A" if y is greater than 90, "Grade B"
# if y is greater than 60 but less than or equal to 90 and "Grade F" otherwise y = 89.1 if(y > 90): print("Grade A, Congratulations") elif(y >60 and y<=90): print("Grade B, All the best") else: print("Grade F, Long way to Go..!") |
4. Looping Constructs
| For Loop | |
| for i in range(11,50):
print(i) |
# For Loop to print all the numbers between 10 and 50 |
| for i in range(11,50):
if(i%2 != 0): print(i) range(start, stop[, step]) -> range object |
# For Loop to print all the ODD numbers between 10 and 50
But Another Option: for i in range(11,50,2): |
5. Functions
- Reusable piece of code – created for Solving SPECIFIC Problem
| def function_name(inpu_argument):
statement1; statement2; return some_var; |
def area_circle(radius):
area = 3.14*r*r return area |
| def compare(a,b):
if(a>b): greater=a else: greater=b return greater |
compare(10,50)
>50 |
6. Python Data Structure
- Existing DataType: int,float, bool, str – can be stored in Single FORMAT only
- 2 Data Structure:
- Lists :– With Sequence : [1,’Python’, 2, ‘is’, 3, ‘Awesome’]
- Dictionaries :- Without Sequence: {‘Ramesh’:150, ‘Sudesh’:160, ‘Suresh’:146}
7. Lists
- Ordered Data Structure – with elements separated by comma – enclosed with Square Brackets
- Extract Single Element: list[index#] # Index
- Extract Sequence: List[0:4] # Starts with 0 and Stops at 3 (not 4-1)
- List Functions: append(), extend([another_list]), remove() , del list[index#],
- Accessing List: for i in list_name: print(list)
| # Creating a List
marks=[1,2,3,4,5,6,7,8,9,10] marks |
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] |
| marks[5] # Index starts at 0 | 6 |
| # Get Elements till 6
marks[0:6] |
[1, 2, 3, 4, 5, 6] |
| # Adding an element
marks.append(11) marks |
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
|
marks.extend([12,13]) marks |
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 12, 13] |
| marks.append([14,15])
marks |
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 12, 13, [14, 15]] |
| # Deleting elements in List
marks.remove([14,15]) del marks[0] |
# Deleting by Actual
# Deleting by Index Value |
| # Accessing List & Operating on Elements with For
for mark in marks: print(mark*100) |
200
300 400 … |
8. Dictionaries
- Un-Ordered Data Structure – Elements are stored in {Key : Value} pairs
- Add Elements to dictionary with: update() function ; Delete with: del dict(‘Key’)
| marks={‘history’:45, ‘Geography’:54, ‘Hindi’:56}
marks |
{‘Geography’: 54, ‘Hindi’: 56, ‘history’: 45} |
| marks[‘Geography’] | 54 |
| marks[‘english’] = 47 // Adding Elements
marks |
{‘Geography’: 54, ‘Hindi’: 56, ‘english’: 47, ‘history’: 45} |
| marks.update({‘Chemistry’:89, ‘Physics’:98})
marks |
{‘Chemistry’: 89,
‘Geography’: 54, ‘Hindi’: 56, ‘Physics’: 98, ‘english’: 47, ‘history’: 45} |
| del marks[‘Hindi’]
marks |
{‘Chemistry’: 89, ‘Geography’: 54, ‘Physics’: 98, ‘english’: 47, ‘history’: 45} |
9. Understanding Standard Libraries in Python
- Built-In Functions provided by ‘Standard Library’
- Module: Single Python File/Class,
- Package: Bundle of Modules
- format: from Package.Module import Function (or)
- from Package import Module => use dot operator for accessing function
- Module.function(x,y)
Data Frames
Reading CSV in Python – Introduction to Pandas
- Pandas: Python Data Analysis Toolkit for READING, FILTERING, MANIPULATING, VISUALIZING and EXPORTING Data
- Different Varieties of Data: CSV, JSON, HTML, Excel …
| import pandas as pd | |
| df = pd.read_csv("data.csv") | # Read CSV |
| df = pd.read_excel("data.csv") | # Read Excel |
Data Frames & its Operations
- Data Frame is similar to Excel Tabular datasheet
- (But) Row Index starts from 0
- Some Data Frame(df) functions: df.shape(), df.head()/tail(), df.columns, df[“Column”]
Initial Understanding of Data Frame
| df.shape | (891,12) # 891 Rows and 12 Columns |
| df.head() | df.tail() |
| df.columns | # Display all Column Name |
| df.info() | |
| df.describe().transpose() | |
| df[‘Embarked’] | # Get All values of Single Column |
| df[[‘Embarked’,’Age’]] | # Inside List of Multiple Columns |
Indexing a Data Frame
| df.iloc[:5] | # Selecting ROWs by their positions
Range of Rows : From 0 to 4th Index (5-1) (If comma not available, then all columns) |
| df.iloc[:,:2]
# Select All Rows & Columns from 0 to 1 (2-1) |
[Rows, Columns] =>
[Start_Row : End_Row , Start_Column : End_Col] |
| df[df[‘Embarked’]==’C’] | # Display All Rows only with EMBARKED=C |
| df.iloc[:,-2:] | Accessing Last 2 Columns with iloc |
| df.iloc[-10:,:2] | # Access last 10 rows and first two columns of the index dataframe |
| df.iloc[24,4] & also
df.iloc[24:25,4:5] |
# Access Element of 25th Row – 5th Column |
| df.loc[:,[‘Dependents’,’Education’]] | # Selecting these 2 Columns only |








You must be logged in to post a comment.